B.Tech. (Sem.-2)
 ENGINEERING MATHEMATICS-II
 Subject Code : BTAM-102 (2011 Batch)
 Paper ID : [A1111]

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTION TO CANDIDATES :

1. SECTION-A is COMPULSORY.
2. Attempt any FIVE questions SECTION - B \& C.
3. Select at least TWO questions from SECTION - B \& C.

SECTION-A

1. (a) Find the general value of $\log (-1+\sqrt{3} i)$.
(b) Solve the differential equation $\frac{d^{3} y}{d x^{3}}+\mathrm{y}=0$
(c) Under what conditions on ' $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d', the differential equation $(\operatorname{asinh} x \cos y+\mathrm{b} \cosh x \sin y) d x+(c \sinh x \cos y+\mathrm{d} \cosh x \sin y) d y=0$, is exact?
(d) Find all the roots of $(-8 i)^{1 / 3}$.
(e) Test for what values of ' k ' the set of vectors $\{(k, 1,1),(0,1,1),(k, 0, k)\}$ is linearly independent.
(f) Examine the convergence / divergence of the series $\sum_{n=1}^{\infty} \frac{x^{n}}{(2 n)!}$
(g) Test the absolute convergence of the series $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n(\log n)^{2}}$
(h) Test whether the matrix $\left(\begin{array}{rrr}3 & 1 & -1 \\ -2 & 1 & 2 \\ 0 & 1 & 2\end{array}\right)$ is diagonalisable or not?
(i) For what values of ' k ', the system of equation $x+y+z=2 ; x+2 y+z=-2 ; x+y+(k-5) z=k$, has no solution.
(j) Express $\cos 6 \theta$ in terms of powers of $\cos \theta$.

$$
\text { SECTION-B } \quad(4 \times 5=20 \text { Marks })
$$

2. (a) Find the general solution of the differential

$$
\left(3 x^{2} y^{3} e^{y}+y^{3}+y^{2}\right) d x+\left(x^{2} y^{3} e^{y}-x y\right) d y=0
$$

(b) Obtain the general solution of the equation $y^{\prime \prime}+3 y^{\prime}+2 y=\sin \left(e^{x}\right)$, by using method of variation of parameters .
3. (a) Solve the following simultaneous differential equation

$$
\frac{d x}{d t}+\mathrm{y}=\sin \mathrm{t}, \frac{d y}{d t}+\mathrm{x}=\cos \mathrm{t}, \mathrm{y}(0)=0, \mathrm{x}(0)=2
$$

(b) Find the complete solution of the differential equation

$$
(x+1)^{2} y^{\prime \prime}+(x+1) y^{\prime}+y=\sin (2 \log (1+x))
$$

by using operator method.
4. (a) Solve the differential equation $x\left(\frac{d y}{d x}+y\right)=1-y$
(b) Find the particular solution of the differential equation $y^{\prime \prime}+a^{2} y=s e c a x$
5. An L-C-R circuit with battery e.m.f ' $\mathrm{E} \sin p t$ 'is tuned to resonance so that $p^{2}=\frac{1}{L C}$. If initially the current i and the charge q be zero, then show that for small value of $\frac{R}{L}$, the current in the circuit at time t is given by $\frac{E}{2 L} \mathrm{t} \sin \mathrm{pt}$.
6. (a) Find the eigen values and the corresponding eigen vectors of the matrix

$$
\left(\begin{array}{ccc}
-2 & 2 & -3 \\
2 & 1 & -6 \\
-1 & -2 & 0
\end{array}\right)
$$

(b) Test the convergence of the series $\sum_{n=1}^{\infty} \frac{\cos n \pi}{n^{2}+1}$
7. (a) Test the consistency of the system of equations
$\mathrm{x}+2 \mathrm{y}-\mathrm{z}=3 ; 3 \mathrm{x}-\mathrm{y}+2 \mathrm{z}=1 ; 2 \mathrm{x}-2 \mathrm{y}+3 \mathrm{z}=2 ; \mathrm{x}-\mathrm{y}+\mathrm{z}=-1$, and if consistent, then solve it completely.
(b) Reduce the matrix

$$
\left(\begin{array}{rrrr}
0 & 1 & -3 & -1 \\
1 & 0 & 1 & 1 \\
3 & 1 & 0 & 2 \\
1 & 1 & -2 & 0
\end{array}\right)
$$

to normal form and hence find its rank.
8. (a) Discuss for what values of x^{\prime} does the series $\frac{1}{2} x+x^{2}+\frac{9}{8} x^{3}+x^{4}+\frac{25}{32} x^{5}+\ldots . . \infty$, converge/diverge.
(b) Examine the convergence/diverge of the series

$$
\sum_{n=1}^{\infty}\left[\left(n^{3}+1\right)^{\frac{1}{3}}-n\right]
$$

9. (a) Use Demoivre's theorem to find all the roots of the equation

$$
z^{4}-(1-z)^{4}=0
$$

(b) Find the sum to infinity of the series
$1-\frac{1}{2} \cos \theta+\frac{1.3}{2.4} \cos 2 \theta-\frac{1.3 .5}{2.4 .6} \cos 2 \theta+\ldots \ldots \ldots,(-\pi<\theta<\pi)$.

